Allotropes Of Iron
   HOME

TheInfoList



OR:

At
atmospheric pressure Atmospheric pressure, also known as barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as , which is equivalent to 1013.25 millibars, ...
, three
allotropic Allotropy or allotropism () is the property of some chemical elements to exist in two or more different forms, in the same physical state, known as allotropes of the elements. Allotropes are different structural modifications of an element: th ...
forms of
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in f ...
exist, depending on temperature: alpha iron (α-Fe), gamma iron (γ-Fe), and delta iron (δ-Fe). At very high pressure, a fourth form exists, called epsilon iron (ε-Fe). Some controversial experimental evidence suggests the existence of a fifth high-pressure form that is stable at very high pressures and temperatures. The phases of iron at atmospheric pressure are important because of the differences in solubility of
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent In chemistry, the valence (US spelling) or valency (British spelling) of an element is the measure of its combining capacity with o ...
, forming different types of
steel Steel is an alloy made up of iron with added carbon to improve its strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels that are corrosion- and oxidation-resistant ty ...
. The high-pressure phases of iron are important as models for the solid parts of planetary cores. The
inner core Earth's inner core is the innermost geologic layer of planet Earth. It is primarily a solid ball with a radius of about , which is about 20% of Earth's radius or 70% of the Moon's radius. There are no samples of Earth's core accessible for d ...
of the
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
is generally assumed to consist essentially of a crystalline iron-
nickel Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive but large pieces are slow to ...
alloy An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductility, ...
with ε structure. The outer core surrounding the solid inner core is believed to be composed of liquid iron mixed with nickel and trace amounts of lighter elements.


Standard pressure allotropes


Alpha iron (α-Fe)

Below 912 °C (1,674 °F), iron has a
body-centered cubic In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There are three main varieties of ...
(bcc)
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macro ...
structure and is known as α-iron or ferrite. It is
thermodynamically stable In chemistry, chemical stability is the thermodynamic stability of a chemical system. Thermodynamic stability occurs when a system is in its lowest energy state, or in chemical equilibrium with its environment. This may be a dynamic equilibriu ...
and a fairly soft metal. α-Fe can be subjected to pressures up to ca. 15 GPa before transforming into a high-pressure form termed ε-Fe discussed below. Magnetically, α-iron is
paramagnetic Paramagnetism is a form of magnetism whereby some materials are weakly attracted by an externally applied magnetic field, and form internal, induced magnetic fields in the direction of the applied magnetic field. In contrast with this behavior, ...
at high temperatures. However, below its
Curie temperature In physics and materials science, the Curie temperature (''T''C), or Curie point, is the temperature above which certain materials lose their permanent magnetic properties, which can (in most cases) be replaced by induced magnetism. The Cur ...
(TC or ''A2'') of 771 °C (1044K or 1420 °F), it becomes ferromagnetic. In the past, the paramagnetic form of α-iron was known as ''Beta iron'' (β-Fe). Even though the slight tetragonal distortion in the ferromagnetic state does constitute a true phase transition, the continuous nature of this transition results in only minor importance in steel
heat treating Heat treating (or heat treatment) is a group of industrial, thermal and metalworking processes used to alter the physical, and sometimes chemical, properties of a material. The most common application is metallurgical. Heat treatments are also ...
. The A2 forms the boundary between the beta iron and alpha fields in the phase diagram in Figure 1. Similarly, the A2 is of only minor importance compared to the A1 (
eutectoid A eutectic system or eutectic mixture ( ) is a homogeneous mixture that has a melting point lower than those of the constituents. The lowest possible melting point over all of the mixing ratios of the constituents is called the ''eutectic tempe ...
), A3 and Acm critical temperatures. The Acm, where
austenite Austenite, also known as gamma-phase iron (γ-Fe), is a metallic, non-magnetic allotrope of iron or a solid solution of iron with an alloying element. In plain-carbon steel, austenite exists above the critical eutectoid temperature of 1000 K ...
is in equilibrium with
cementite Cementite (or iron carbide) is a compound of iron and carbon, more precisely an intermediate transition metal carbide with the formula Fe3C. By weight, it is 6.67% carbon and 93.3% iron. It has an orthorhombic crystal structure. It is a hard, bri ...
+ γ-Fe, is beyond the right edge in Fig. 1. The α + γ phase field is, technically, the β + γ field above the A2. The beta designation maintains continuity of the Greek-letter progression of phases in iron and steel: α-Fe, β-Fe,
austenite Austenite, also known as gamma-phase iron (γ-Fe), is a metallic, non-magnetic allotrope of iron or a solid solution of iron with an alloying element. In plain-carbon steel, austenite exists above the critical eutectoid temperature of 1000 K ...
(γ-Fe), high-temperature δ-Fe, and high-pressure
hexaferrum Hexaferrum and epsilon iron (ε-Fe) are synonyms for the hexagonal close-packed (HCP) phase of iron that is stable only at extremely high pressure. A 1964 study at the University of Rochester mixed 99.8% pure α-iron powder with sodium chlo ...
(ε-Fe). The primary
phase Phase or phases may refer to: Science *State of matter, or phase, one of the distinct forms in which matter can exist *Phase (matter), a region of space throughout which all physical properties are essentially uniform * Phase space, a mathematic ...
of low-carbon or mild steel and most
cast iron Cast iron is a class of iron–carbon alloys with a carbon content more than 2%. Its usefulness derives from its relatively low melting temperature. The alloy constituents affect its color when fractured: white cast iron has carbide impuriti ...
s at room temperature is ferromagnetic α-Fe. It has a hardness of approximately 80 Brinell. The maximum
solubility In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution. The extent of the solubil ...
of carbon is about 0.02 wt% at and 0.001% at . When it dissolves in iron, carbon atoms occupy interstitial "holes". Being about twice the diameter of the tetrahedral hole, the carbon introduces a strong local strain field. Mild steel (carbon steel with up to about 0.2 wt% C) consist mostly of α-Fe and increasing amounts of
cementite Cementite (or iron carbide) is a compound of iron and carbon, more precisely an intermediate transition metal carbide with the formula Fe3C. By weight, it is 6.67% carbon and 93.3% iron. It has an orthorhombic crystal structure. It is a hard, bri ...
(Fe3C, an iron carbide). The mixture adopts a lamellar structure called
pearlite Pearlite is a two-phased, lamellar (or layered) structure composed of alternating layers of ferrite (87.5 wt%) and cementite (12.5 wt%) that occurs in some steels and cast irons. During slow cooling of an iron-carbon alloy, pearlite forms ...
. Since
bainite Bainite is a plate-like microstructure that forms in steels at temperatures of 125–550 °C (depending on alloy content). First described by E. S. Davenport and Edgar Bain, it is one of the products that may form when austenite (the face-c ...
and pearlite each contain α-Fe as a component, any iron-carbon alloy will contain some amount of α-Fe if it is allowed to reach equilibrium at room temperature. The amount of α-Fe depends on the cooling process.


A2 critical temperature and induction heating

β-Fe and the A2 critical temperature are important in
induction heating Induction heating is the process of heating electrically conductive materials, namely metals or semi-conductors, by electromagnetic induction, through heat transfer passing through an induction coil that creates an electromagnetic field within th ...
of steel, such as for surface-hardening heat treatments. Steel is typically austenitized at 900–1000 °C before it is
quenched In materials science, quenching is the rapid cooling of a workpiece in water, oil, polymer, air, or other fluids to obtain certain material properties. A type of heat treating, quenching prevents undesired low-temperature processes, such as ph ...
and tempered. The high-frequency alternating magnetic field of induction heating heats the steel by two mechanisms below the Curie temperature: resistance or Joule (I2R) heating and ferromagnetic hysteresis losses. Above the A2, the hysteresis mechanism disappears and the required amount of energy per degree of temperature increase is substantially larger than below A2. Load-matching circuits may be needed to vary the impedance in the induction power source to compensate for the change.


Gamma iron (γ-Fe)

When heating iron above 912 °C (1,674 °F), its
crystal structure In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions or molecules in a crystal, crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric pat ...
changes to a
face-centered cubic In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There are three main varieties of ...
(fcc) crystalline structure. In this form it is called gamma iron (γ-Fe) or
Austenite Austenite, also known as gamma-phase iron (γ-Fe), is a metallic, non-magnetic allotrope of iron or a solid solution of iron with an alloying element. In plain-carbon steel, austenite exists above the critical eutectoid temperature of 1000 K ...
. γ-iron can dissolve considerably more carbon (as much as 2.04% by mass at 1,146 °C). This γ form of carbon saturation is exhibited in
stainless steel Stainless steel is an alloy of iron that is resistant to rusting and corrosion. It contains at least 11% chromium and may contain elements such as carbon, other nonmetals and metals to obtain other desired properties. Stainless steel's corros ...
.


Delta iron (δ-Fe)

Peculiarly, above 1,394 °C (2,541 °F) iron changes back into the bcc structure, known as δ-Fe. δ-iron can dissolve as much as 0.08% of carbon by mass at 1,475 °C. It is stable up to its melting point of 1,538 °C (2,800 °F).


High pressure allotropes


Epsilon iron / Hexaferrum (ε-Fe)

At pressures above approximately 10 GPa and temperatures of a few hundred kelvin or less, α-iron changes into a
hexagonal close-packed In geometry, close-packing of equal spheres is a dense arrangement of congruent spheres in an infinite, regular arrangement (or lattice). Carl Friedrich Gauss proved that the highest average density – that is, the greatest fraction of space occu ...
(hcp) structure, which is also known as ε-iron or hexaferrum; the higher-temperature γ-phase also changes into ε-iron, but does so at a higher pressure.
Antiferromagnetism In materials that exhibit antiferromagnetism, the magnetic moments of atoms or molecules, usually related to the spins of electrons, align in a regular pattern with neighboring spins (on different sublattices) pointing in opposite directions. ...
in alloys of epsilon-Fe with Mn, Os and Ru has been observed.


Experimental high temperature and pressure

An alternate stable form, if it exists, may appear at pressures of at least 50 GPa and temperatures of at least 1,500 K; it has been thought to have an orthorhombic or a double hcp structure. , recent and ongoing experiments are being conducted on high-pressure and superdense carbon allotropes.


Phase transitions


Melting and boiling points

The melting point of iron is experimentally well defined for pressures less than 50 GPa. For greater pressures, published data (as of 2007) put the γ-ε-liquid
triple point In thermodynamics, the triple point of a substance is the temperature and pressure at which the three phases (gas, liquid, and solid) of that substance coexist in thermodynamic equilibrium.. It is that temperature and pressure at which the subli ...
at pressures that differ by tens of gigapascals and 1000 K in the melting point. Generally speaking,
molecular dynamics Molecular dynamics (MD) is a computer simulation method for analyzing the physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamic "evolution" of the ...
computer simulations of iron melting and shock wave experiments suggest higher melting points and a much steeper slope of the melting curve than static experiments carried out in
diamond anvil cell A diamond anvil cell (DAC) is a high-pressure device used in geology, engineering, and materials science experiments. It enables the compression of a small (sub-millimeter-sized) piece of material to extreme pressures, typically up to around 1 ...
s. The melting and boiling points of iron, along with its
enthalpy of atomization In chemistry, the enthalpy of atomization (also atomisation in British English) is the enthalpy change that accompanies the total separation of all atoms in a chemical substance (either an element or a compound). This is often represented by th ...
, are lower than those of the earlier group 3d elements from
scandium Scandium is a chemical element with the symbol Sc and atomic number 21. It is a silvery-white metallic d-block element. Historically, it has been classified as a rare-earth element, together with yttrium and the Lanthanides. It was discovered in ...
to
chromium Chromium is a chemical element with the symbol Cr and atomic number 24. It is the first element in group 6. It is a steely-grey, lustrous, hard, and brittle transition metal. Chromium metal is valued for its high corrosion resistance and hardne ...
, showing the lessened contribution of the 3d electrons to metallic bonding as they are attracted more and more into the inert core by the nucleus;Greenwood and Earnshaw, p. 1116 however, they are higher than the values for the previous element
manganese Manganese is a chemical element with the symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese is a transition metal with a multifaceted array of industrial alloy use ...
because that element has a half-filled 3d subshell and consequently its d-electrons are not easily delocalized. This same trend appears for ruthenium but not osmium.Greenwood and Earnshaw, pp. 1074–75


Structural phase transitions

The exact temperatures at which iron will transition from one crystal structure to another depends on how much and what type of other elements are dissolved in the iron. The phase boundary between the different solid phases is drawn on a binary phase diagram, usually plotted as temperature versus percent iron. Adding some elements, such as
Chromium Chromium is a chemical element with the symbol Cr and atomic number 24. It is the first element in group 6. It is a steely-grey, lustrous, hard, and brittle transition metal. Chromium metal is valued for its high corrosion resistance and hardne ...
, narrows the temperature range for the gamma phase, while others increase the temperature range of the gamma phase. In elements that reduce the gamma phase range, the alpha-gamma phase boundary connects with the gamma-delta phase boundary, forming what is usually called the ''Gamma loop''. Adding Gamma loop additives keeps the iron in a body-centered cubic structure and prevents the steel from suffering
phase transition In chemistry, thermodynamics, and other related fields, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states of ...
to other solid states.


See also

*
Tempering (metallurgy) Tempering is a process of heat treating, which is used to increase the toughness of iron-based alloys. Tempering is usually performed after hardening, to reduce some of the excess hardness, and is done by heating the metal to some temperature be ...


References

{{DEFAULTSORT:Allotropes Of Iron
Iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in f ...
Iron Steel Metallurgy